The projection method for the incompressible Navier-Stokes equations: The pressure near a no-slip wall

نویسنده

  • A. W. Vreman
چکیده

An explicit staggered projection method for the incompressible Navier-Stokes equations with no-slip walls is analyzed and used in simulations to address several issues related to the pressure boundary condition required when the continuity equation is replaced by the standard pressure Poisson equation (PPE), ∇p = ∇ · (−u · ∇u+ f). First, it is shown that a PPE system supplemented with a Neumann pressure boundary condition derived from the momentum equation can be made consistent with the Navier-Stokes equations if it is extended with the requirement that ∇·∇u = 0 is zero near the wall and the solution is sufficiently smooth. This implies that it is possible to formulate a boundary condition for the standard PPE without the necessity to resort to Green’s functions, which is interesting for theoretical reasons. Second, the equivalence is shown between the staggered projection method and the staggered discretization of above PPE system. The derivation of the equivalence sheds light upon the so-called PPE paradox and leads to an approximation of the wall value of ∂p/∂n, which is not required but implied by the staggered projection method. Third, the (near-wall) regularity of a solution of the Navier-Stokes equations is numerically analyzed by means of Direct Numerical Simulation of turbulent channel flow performed with the staggered projection method. From the numerical inspection of all terms of the momentum equation in the near-wall region, it is concluded that the three components of the momentum equation are satisfied on the wall for t > 0 (for short times, but also in the turbulent regime). In the limit t→ 0, the pressure gradient is observed to converge to the initial pressure gradient in the L2-norm, which confirms a disputed theoretical result in literature. Even in the maximum norm, the pressure gradient appears to converge to the initial pressure gradient. The only discontinuities observed in the simulations are the discontinuities of the tangential viscous terms and the time derivatives of the tangential velocities on the wall at t = 0. Thus the numerical results indicate that the regularity of the solution for turbulent channel flow is stronger than claimed by existing theory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An efficient method for the incompressible Navier-Stokes equations on irregular domains with no-slip boundary conditions, high order up to the boundary

Common efficient schemes for the incompressible Navier-Stokes equations, such as projection or fractional step methods, have limited temporal accuracy as a result of matrix splitting errors, or introduce errors near the domain boundaries, resulting in weakly convergent solutions. We recast the Navier-Stokes incompressibility constraint as a pressure Poisson equation with velocity dependent boun...

متن کامل

شبیه سازی مستقیم عددی جریان آشفته توسعه یافته در کانال با شرط مرزی لغزش روی یکی از دیوارها

In this study, the results of a direct numerical simulation of turbulent drag reduction in a channel flow by hydrophobic coating at a nominal shear Reynolds number of Reτ = 180 are reported. Slip condition is imposed on the lower wall whereas the upper wall has no-slip condition. For this purpose, the use is made of a numerical simulation of three-dimensional, time-dependent Navier-Stokes e...

متن کامل

Stable and accurate pressure approximation for unsteady incompressible viscous flow

How to properly specify boundary conditions for pressure is a longstanding problem for the incompressible Navier–Stokes equations with no-slip boundary conditions. An analytical resolution of this issue stems from a recently developed formula for the pressure in terms of the commutator of the Laplacian and Leray projection operators. Here we make use of this formula to (a) improve the accuracy ...

متن کامل

An Immersed Interface Method for the Incompressible Navier-Stokes Equations in Irregular Domains

We present an immersed interface method for the incompressible Navier Stokes equations capable of handling rigid immersed boundaries. The immersed boundary is represented by a set of Lagrangian control points. In order to guarantee that the no-slip condition on the boundary is satisfied, singular forces are applied on the fluid at the immersed boundary. The forces are related to the jumps in pr...

متن کامل

Turbulent Flow over Cars

In this paper the flow behaviour over a number of car bodies is studied. For this purpose the unsteady 2-D incompressible Navier-Stokes equations have been applied. After averaging and nondimensionalizing the equations, the system of equations has been transformed from the Cartesian (x-y) coordinates to a body fitted generalized (-) coordinate. As the flow is incompressible, the density in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 263  شماره 

صفحات  -

تاریخ انتشار 2014